
the judgment that it ensures su�cient reproducibility, 
quality of operation, and availability of operational data for 
validation.
　Table 3.4 presents the relationship between the average 
MAE when training on the entire burner operation and 
when training only on the start-up operation where the 
aggregate temperature converged. According to the table, 
training using only the start-up operation where the 
aggregate temperature has converged results in a higher 
average MAE, indicating reduced prediction accuracy. 
　Figure 3-4 presents trend graphs of the predicted 
burner opening degree using two models: one trained on the 
entire burner operation and the other trained only on the 
start-up operation at converged temperature. In the graphs, 
the dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e trend 
graphs also con�rm that the model trained on the entire 
burner operation produces prediction results that more 
closely align with the actual values. In general, prediction 
accuracy tends to decrease with a smaller amount of training 
data. In this study, focusing only on the start-up operation 
reduced the training volume by 74%. 
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and Convolutional Neural Network (CNN).
LSTM is a type of neural network designed to handle 
time-series data. As a variant of the Recurrent Neural 
Network (RNN), it addresses the issue of “long-term 
m em o r y  l o ss” f o un d  i n  c o nventi o na l  R N Ns  b y 
introducing memory cells that can retain information 
over extended periods. LSTM adopts a structure that 
recursively uses “memory cell blocks” in place of the 
hidden states used in standard RNNs, enabling it to 
simultaneously leverage both long-term and short-term 
memory. Within each memory cell, a gating mechanism is 
learned, which uses the output values of a combination of 
“the fully connected layer + an activation function” as 

weighting factors to adjust the values of other pathways3).
　CNN is a type of neural network specialized in 
extracting local features. �is network extracts local 
features from input data and aggregates them through 
convolution operations to generate an output. While 
CNNs are generally used in image processing to extract 
two-dimensional spatial features, they can also be applied 
to one-dimensional time series data. In such cases, CNNs 
are able to make predictions based on historical data 
within a �xed time window4).

3.2 Validation Items and Test Results 
　To evaluate the appropriate conditions for constructing 
a  hig h-accurac y pre dictive  model ,  the fol lowing 
validations were conducted:
　１. Validation of training period
　2. Validation of seasonality
　3. Validation of input parameters
　4. Validation of use of only start-up operation
　5. Validation of manual start-up operation
　6. Validation of adding temperature parameters
　7. Validation of use of limited training data
　Validation 5 is similar to Validation 4 in that both use 
only the start-up operation as training data. However, 
while Validation 4 includes both manual and automatic 
operations, Validation 5 uses only manual operations. It 
should be noted that “automatic operation” refers to the 
burner opening operation performed at the control panel, 
whereas “manual operation” refers to the same operation 
performed directly by a veteran operator.

3.2.1 Validation of Training Period
　To identify the appropriate training period conditions, 
we varied the training period of the predictive model (i.e., 

the durations of the training and validation data periods) 
and examined the behavior of the Mean Absolute Error 
(MAE). MAE represents the average of the absolute 
di�erences between the true values and the predicted 
values, which allows us to evaluate the prediction accuracy. 
It is commonly used when the goal is to minimize error, as 
a smaller MAE indicates a smaller discrepancy between 
the true and predicted values. In this study, MAE was 
adopted as an index to validate the prediction accuracy of 
the burner opening degree, representing the di�erence 
between the predicted burner opening and the operation 
performed by a veteran operator. �e average of the MAE 
values obtained in each validation run was referred to as 
"averag e MAE" and was used as  the performance 
evaluation metric for the predictive model.
　Table 3.1 presents the relationship between the training 
period and the average MAE. Overall, the table indicates 
that the longer the training period, the lower the average 
MAE̶in other words, the performance of the predictive 
model improves as the training period increases. 
　�e improvement in average MAE was particularly 
signi�cant when the training period ranged from two 
weeks to one month. However, when the training period 
exceeded one month, the degree of improvement became 
more gradual. Based on this result and considering the 
goal of minimizing the time required for implementation, 
we determined that a one-month training period is 
appropriate, as it achieves 84% of the improvement seen 
with a six-month training period.
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Development of an Operation Support System
for Emulating Veteran Operators’ Burner

Operation in Asphalt Plants 

Abstract
　A common issue across the manufacturing industry is the challenge of transferring technical skills to the next 
generation. To support the succession of operational expertise in asphalt plants (hereina�er “plants”), we are 
working on developing an AI-based operation support system (hereina�er “support system”) that makes the 
operating know-how of veteran operators visible and explicit, enabling novice operators̶who lack 
plant-speci�c expertise̶to operate the plant at a level equivalent to that of veteran operators.
　Speci�cally, focusing on burner operation, we train AI under various conditions using operational data from 
veteran operators to construct a predictive model of burner opening degree. By comparing the actual measured 
burner opening degree under each condition with the predicted values from the model and checking the mean 
absolute error, we verify the optimal conditions for creating the predictive model.

1. Background
　�e low success rate of skill transfer to the next generation 
poses a signi�cant challenge in the manufacturing 
industry1). One reason for the low rate is the presence of 
tacit knowledge in veteran operators’ techniques, which 
are di�cult to express or formalize.
　To address  the  cha l leng e ,  we  have  app l ie d  A I 
technologies to make the operational expertise of veteran 
operators visible and explicit in an asphalt plant, so as to 
develop an operation support system that enables novice 
operators without specialized plant knowledge to operate 
the plant with the same pro�ciency as veteran operators.

2. Objective
　�is paper focuses on the predictive function of the 
operation support system, with particular emphasis on the 
function that emulates burner operations performed by 
veteran operators, as this operation plays a critical role 
within the system. �e objective is to identify appropriate 
training data conditions and validate the feasibility of this 
predictive function during the start-up phase of plant 
operation̶speci�cally, the period from burner ignition 
until the aggregate temperature reaches a set temperature 
(hereina�er “start-up operation”). �e burner selected for 
validation (hereina�er referred to as the “V-burner”) is 
the one used for heating and drying virgin aggregate, 

where the feed rate, type, and ratio (feed composition) of 
the aggregate vary. Based on the validation results, the 
author aims to realize an operation support system that 
enables even novice operators without specialized 
knowledge of plant operations to perform operations 
equivalent to those of veteran operators by following the 
guidance of the predictive model that emulates veteran 
operator behavior. In addition, the author is planning to 
undertake e�orts to achieve full automation of the plant 
including improvements to the PID control system2) 
currently used for heating and drying aggregate at the 
control panel that controls the plant, as well as to establish 
remote-operation-based plant operation services.
　Validation of the feasibility of the predictive function 
that emulates the operations of veteran operators is 
essential to enable novice operators without specialized 
knowledge of plant operations to carry out plant operations 
at a level equivalent to that of veteran operators. �e 
predictive function will constitute a key foundational 
technolog y for the complete automation of plant 
operations, which we are pursuing.

3. Test Details
3.1 Algorithm Used for the Test
　�e predictive model used to emulate the burner 
operation employs Long Short-Term Memory (LSTM) 

prediction results that were more closely aligned with the 
actual measurements. However, the moisture content in 
the supplied sand is considered to have a signi�cant 
impact on burner opening control. �erefore, we will 
continue further validation on the input parameters.

3.2.4 Validation Using Only Start-Up Operation Data
　In previous validations, the model was trained on the 
entire burner operation̶from ignition to shutdown 
(hereina�er referred to as "entire burner operation"). Since 
this development focuses speci�cally on the burner’s start-up 
operation, we conducted a validation using only start-up 
operation data to examine whether it would improve the 
performance of the predictive model. In this validation, 
both automatic and manual operations during start-up 
were included as training data. �e range of start-up 
operation was de�ned as the period from burner ignition 
until the aggregate temperature converges. �e convergence 
condition was de�ned as “when the consecutive extrema fall 
within ±8°C of the set temperature (hereina�er referred to 
as the settling range) three times in series or when the 
temperature remains within the settling range continuously 
for six minutes.” A diagram of the convergence condition is 
shown in Figure 3-3. In the example in Figure 3-3, the 
gray-shaded area is considered to represent the period during 
which the aggregate temperature has converged. �is 
convergence condition was de�ned by the author, based on 

　Figure 3-1 presents trend graphs of the predicted 
burner opening degree using models trained over two 
weeks and one month. In the graphs, the solid line 
represents the predicted values, while the dashed line 
represents the actual measured values. �ese graphs also 
con�rm that the one-month model yields smaller errors 
relative to the actual values and produces more accurate 
prediction results than the two-week model.

3.2.2 Validation of Seasonality
　We assumed that the prediction accuracy might vary 
depending on the di�erence in ambient temperature 
between the data used to train the predictive model and 
the data used for validation. �erefore, we validated the 
prediction accuracy by varying the data acquisition period 
used for model training (hereina�er referred to as the 
“training period”) and the data acquisition period used 

for model validation (hereina�er referred to as the 
“validation period”). In this validation, the training 

period was �xed from April 1 to April 30, 2021, while the 
validation period was varied to observe the behavior of 
the MAE.
　Table 3.2 presents the relationship between the gap in 
timing between the training and validation periods and 

3.2.3 Validation of Input Parameters
　To improve prediction accuracy, we validated whether 
the prediction accuracy could be improved by modifying 
parameters such as aggregate temperature (hereina�er 
referred to as "input parameters") that are used to create 
the predictive model.
　Table 3.3 presents the relationship between input 
parameters and the average MAE. In the previous 
validations, three parameters: aggregate temperature, set 
temperature, and total feed rate were used as input 
parameters. �ese were set as the default condition, 
referred to as Condition A. We further de�ned Condition 
B with the addition of the feed rate of each individual 
feeder to Condition A, Condition C with the addition of 
only the sand feeder's feed rate to Condition A, and 
Condition D, which is similar to Condition C but 
excludes the total feed rate from Condition A. We then 
calculated the average MAE for each condition.  
　According to the table, Condition A resulted in the 
lowest average MAE, indicating that increasing the 
number of input parameters tends to degrade prediction 
accuracy. As an example, Figure 3-2 presents trend 
graphs of the predicted burner opening degree using the 
models from Conditions A and B. In the graphs, the 
dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e graphs 
also con�rmed that the model using Condition A produced 

Figure 3-1: Trend graphs of burner opening degree compared
between models trained for two weeks and one month

Table 3.1 Relationship Between
Training Period and Average MAE

the average MAE. According to the table, when the time 
gap between the training and validation periods ranged 
from one week to three months, the average MAE tended 
to increase as the time gap widened. However, for gaps of 
one year and two years, the average MAE was equal to or 
even lower than that of the one-week gap.
　�ese results indicate the presence of an annual cycle 
and suggest that the prediction accuracy is strongly 
correlated with the similarity in ambient temperature 
between the training and validation data. �erefore, we 
concluded that the predictive model needs to be updated 
for each season.

　Table 3.6 compares the average MAE before and a�er 
adding temperature parameters as input variables. �e 
results show that the inclusion of temperature parameters 
led to a reduction in the average MAE, con�rming 
improved predictive model performance.
　Figure 3-7 presents trend graphs of burner opening 
predictions generated by the models with and without the 
addition of temperature parameters to the input parameters. 
In the graphs, the solid line represents predicted values, 
while the dashed line represents actual measurements. �e 
graphs also con�rm that the model incorporating 
temperature parameters produces predictions that more 
closely align with the actual values. Furthermore, it is 
suggested that using only data with su�ciently con�rmed 
cooling time may further enhance prediction accuracy by 
improving the quality of the training dataset.

3.2.7 Validation with Limited Training Data
　Since seasonal variations in ambient temperature are 
considered to a�ect the performance of the predictive 
model, training and testing were conducted using data 
from a period with minimal temperature �uctuations to 
validate improvements in the model’s performance. 
Figure 3-8 shows temperature variations from November 
2020 to March 2021. As temperatures varied signi�cantly 
from November to December but remained relatively 
stable from December to Februar y, the period for 
obtaining operational data was set to December 2020 
through February 2021. �e training period covered two 
weeks in January 2021, and the data used for testing were 
from December 2020 to February 2021.
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　�e timing of the �rst manual adjustment of the burner 
opening a�er ignition (hereina�er referred to as “the 
initial burner adjustment timing”) is expected to vary due 
to human factors and may have an adverse e�ect on the 
performance of the predictive model. �erefore, to 
eliminate the negative impact of such variation, a 
validation was conducted to determine whether focusing 
on the initial burner adjustment timing and narrowing 
the training data̶by selecting 80% of the dataset as 
indicated by the shaded area in Figure 3-9̶would 
improve predictive model performance. �e proportion 
of data used was determined by the author, based on the 
judgment that a su�cient volume of operational data 
could be secured.

　Table 3.7 presents the relationship between the 
burner opening in the data actually used for validation 
and the average MAE before and a�er narrowing the 
training data. �e table con�rms that narrowing the 
training data to records with minimal temperature 
�uctuations and closely aligned initial burner adjustment 
timings results in a lower average MAE, indicating improved 
predictive model performance.

Training period: two weeks

Training period: one month
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Elapsed time [×10 seconds]
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Burner opening degree（%） （measured）
Burner opening degree （%） （predicted）

Training Period Two weeks One month Two months Three months Six months

Average MAE



the judgment that it ensures su�cient reproducibility, 
quality of operation, and availability of operational data for 
validation.
　Table 3.4 presents the relationship between the average 
MAE when training on the entire burner operation and 
when training only on the start-up operation where the 
aggregate temperature converged. According to the table, 
training using only the start-up operation where the 
aggregate temperature has converged results in a higher 
average MAE, indicating reduced prediction accuracy. 
　Figure 3-4 presents trend graphs of the predicted 
burner opening degree using two models: one trained on the 
entire burner operation and the other trained only on the 
start-up operation at converged temperature. In the graphs, 
the dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e trend 
graphs also con�rm that the model trained on the entire 
burner operation produces prediction results that more 
closely align with the actual values. In general, prediction 
accuracy tends to decrease with a smaller amount of training 
data. In this study, focusing only on the start-up operation 
reduced the training volume by 74%. 

and Convolutional Neural Network (CNN).
LSTM is a type of neural network designed to handle 
time-series data. As a variant of the Recurrent Neural 
Network (RNN), it addresses the issue of “long-term 
m em o r y  l o ss” f o un d  i n  c o nventi o na l  R N Ns  b y 
introducing memory cells that can retain information 
over extended periods. LSTM adopts a structure that 
recursively uses “memory cell blocks” in place of the 
hidden states used in standard RNNs, enabling it to 
simultaneously leverage both long-term and short-term 
memory. Within each memory cell, a gating mechanism is 
learned, which uses the output values of a combination of 
“the fully connected layer + an activation function” as 

weighting factors to adjust the values of other pathways3).
　CNN is a type of neural network specialized in 
extracting local features. �is network extracts local 
features from input data and aggregates them through 
convolution operations to generate an output. While 
CNNs are generally used in image processing to extract 
two-dimensional spatial features, they can also be applied 
to one-dimensional time series data. In such cases, CNNs 
are able to make predictions based on historical data 
within a �xed time window4).

3.2 Validation Items and Test Results 
　To evaluate the appropriate conditions for constructing 
a  hig h-accurac y pre dictive  model ,  the fol lowing 
validations were conducted:
　１. Validation of training period
　2. Validation of seasonality
　3. Validation of input parameters
　4. Validation of use of only start-up operation
　5. Validation of manual start-up operation
　6. Validation of adding temperature parameters
　7. Validation of use of limited training data
　Validation 5 is similar to Validation 4 in that both use 
only the start-up operation as training data. However, 
while Validation 4 includes both manual and automatic 
operations, Validation 5 uses only manual operations. It 
should be noted that “automatic operation” refers to the 
burner opening operation performed at the control panel, 
whereas “manual operation” refers to the same operation 
performed directly by a veteran operator.

3.2.1 Validation of Training Period
　To identify the appropriate training period conditions, 
we varied the training period of the predictive model (i.e., 

the durations of the training and validation data periods) 
and examined the behavior of the Mean Absolute Error 
(MAE). MAE represents the average of the absolute 
di�erences between the true values and the predicted 
values, which allows us to evaluate the prediction accuracy. 
It is commonly used when the goal is to minimize error, as 
a smaller MAE indicates a smaller discrepancy between 
the true and predicted values. In this study, MAE was 
adopted as an index to validate the prediction accuracy of 
the burner opening degree, representing the di�erence 
between the predicted burner opening and the operation 
performed by a veteran operator. �e average of the MAE 
values obtained in each validation run was referred to as 
"averag e MAE" and was used as  the performance 
evaluation metric for the predictive model.
　Table 3.1 presents the relationship between the training 
period and the average MAE. Overall, the table indicates 
that the longer the training period, the lower the average 
MAE̶in other words, the performance of the predictive 
model improves as the training period increases. 
　�e improvement in average MAE was particularly 
signi�cant when the training period ranged from two 
weeks to one month. However, when the training period 
exceeded one month, the degree of improvement became 
more gradual. Based on this result and considering the 
goal of minimizing the time required for implementation, 
we determined that a one-month training period is 
appropriate, as it achieves 84% of the improvement seen 
with a six-month training period.

1. Background
　�e low success rate of skill transfer to the next generation 
poses a signi�cant challenge in the manufacturing 
industry1). One reason for the low rate is the presence of 
tacit knowledge in veteran operators’ techniques, which 
are di�cult to express or formalize.
　To address  the  cha l leng e ,  we  have  app l ie d  A I 
technologies to make the operational expertise of veteran 
operators visible and explicit in an asphalt plant, so as to 
develop an operation support system that enables novice 
operators without specialized plant knowledge to operate 
the plant with the same pro�ciency as veteran operators.

2. Objective
　�is paper focuses on the predictive function of the 
operation support system, with particular emphasis on the 
function that emulates burner operations performed by 
veteran operators, as this operation plays a critical role 
within the system. �e objective is to identify appropriate 
training data conditions and validate the feasibility of this 
predictive function during the start-up phase of plant 
operation̶speci�cally, the period from burner ignition 
until the aggregate temperature reaches a set temperature 
(hereina�er “start-up operation”). �e burner selected for 
validation (hereina�er referred to as the “V-burner”) is 
the one used for heating and drying virgin aggregate, 

where the feed rate, type, and ratio (feed composition) of 
the aggregate vary. Based on the validation results, the 
author aims to realize an operation support system that 
enables even novice operators without specialized 
knowledge of plant operations to perform operations 
equivalent to those of veteran operators by following the 
guidance of the predictive model that emulates veteran 
operator behavior. In addition, the author is planning to 
undertake e�orts to achieve full automation of the plant 
including improvements to the PID control system2) 
currently used for heating and drying aggregate at the 
control panel that controls the plant, as well as to establish 
remote-operation-based plant operation services.
　Validation of the feasibility of the predictive function 
that emulates the operations of veteran operators is 
essential to enable novice operators without specialized 
knowledge of plant operations to carry out plant operations 
at a level equivalent to that of veteran operators. �e 
predictive function will constitute a key foundational 
technolog y for the complete automation of plant 
operations, which we are pursuing.

3. Test Details
3.1 Algorithm Used for the Test
　�e predictive model used to emulate the burner 
operation employs Long Short-Term Memory (LSTM) 

　 2025│NO.006

NIKKO TECHNICAL REPORT

─  3  ─ ─  4  ─

2025│NO.006

prediction results that were more closely aligned with the 
actual measurements. However, the moisture content in 
the supplied sand is considered to have a signi�cant 
impact on burner opening control. �erefore, we will 
continue further validation on the input parameters.

3.2.4 Validation Using Only Start-Up Operation Data
　In previous validations, the model was trained on the 
entire burner operation̶from ignition to shutdown 
(hereina�er referred to as "entire burner operation"). Since 
this development focuses speci�cally on the burner’s start-up 
operation, we conducted a validation using only start-up 
operation data to examine whether it would improve the 
performance of the predictive model. In this validation, 
both automatic and manual operations during start-up 
were included as training data. �e range of start-up 
operation was de�ned as the period from burner ignition 
until the aggregate temperature converges. �e convergence 
condition was de�ned as “when the consecutive extrema fall 
within ±8°C of the set temperature (hereina�er referred to 
as the settling range) three times in series or when the 
temperature remains within the settling range continuously 
for six minutes.” A diagram of the convergence condition is 
shown in Figure 3-3. In the example in Figure 3-3, the 
gray-shaded area is considered to represent the period during 
which the aggregate temperature has converged. �is 
convergence condition was de�ned by the author, based on 

　Figure 3-1 presents trend graphs of the predicted 
burner opening degree using models trained over two 
weeks and one month. In the graphs, the solid line 
represents the predicted values, while the dashed line 
represents the actual measured values. �ese graphs also 
con�rm that the one-month model yields smaller errors 
relative to the actual values and produces more accurate 
prediction results than the two-week model.

3.2.2 Validation of Seasonality
　We assumed that the prediction accuracy might vary 
depending on the di�erence in ambient temperature 
between the data used to train the predictive model and 
the data used for validation. �erefore, we validated the 
prediction accuracy by varying the data acquisition period 
used for model training (hereina�er referred to as the 
“training period”) and the data acquisition period used 

for model validation (hereina�er referred to as the 
“validation period”). In this validation, the training 

period was �xed from April 1 to April 30, 2021, while the 
validation period was varied to observe the behavior of 
the MAE.
　Table 3.2 presents the relationship between the gap in 
timing between the training and validation periods and 

3.2.3 Validation of Input Parameters
　To improve prediction accuracy, we validated whether 
the prediction accuracy could be improved by modifying 
parameters such as aggregate temperature (hereina�er 
referred to as "input parameters") that are used to create 
the predictive model.
　Table 3.3 presents the relationship between input 
parameters and the average MAE. In the previous 
validations, three parameters: aggregate temperature, set 
temperature, and total feed rate were used as input 
parameters. �ese were set as the default condition, 
referred to as Condition A. We further de�ned Condition 
B with the addition of the feed rate of each individual 
feeder to Condition A, Condition C with the addition of 
only the sand feeder's feed rate to Condition A, and 
Condition D, which is similar to Condition C but 
excludes the total feed rate from Condition A. We then 
calculated the average MAE for each condition.  
　According to the table, Condition A resulted in the 
lowest average MAE, indicating that increasing the 
number of input parameters tends to degrade prediction 
accuracy. As an example, Figure 3-2 presents trend 
graphs of the predicted burner opening degree using the 
models from Conditions A and B. In the graphs, the 
dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e graphs 
also con�rmed that the model using Condition A produced 

Table 3.2 Relationship Between Gaps in Training‒Validation Period and Average MAE

Table 3.3 Relationship Between Input Parameters and Average MAE

Figure 3-2: Trend graphs of burner opening degree
compared between Conditions A and B

the average MAE. According to the table, when the time 
gap between the training and validation periods ranged 
from one week to three months, the average MAE tended 
to increase as the time gap widened. However, for gaps of 
one year and two years, the average MAE was equal to or 
even lower than that of the one-week gap.
　�ese results indicate the presence of an annual cycle 
and suggest that the prediction accuracy is strongly 
correlated with the similarity in ambient temperature 
between the training and validation data. �erefore, we 
concluded that the predictive model needs to be updated 
for each season.

　Table 3.6 compares the average MAE before and a�er 
adding temperature parameters as input variables. �e 
results show that the inclusion of temperature parameters 
led to a reduction in the average MAE, con�rming 
improved predictive model performance.
　Figure 3-7 presents trend graphs of burner opening 
predictions generated by the models with and without the 
addition of temperature parameters to the input parameters. 
In the graphs, the solid line represents predicted values, 
while the dashed line represents actual measurements. �e 
graphs also con�rm that the model incorporating 
temperature parameters produces predictions that more 
closely align with the actual values. Furthermore, it is 
suggested that using only data with su�ciently con�rmed 
cooling time may further enhance prediction accuracy by 
improving the quality of the training dataset.

3.2.7 Validation with Limited Training Data
　Since seasonal variations in ambient temperature are 
considered to a�ect the performance of the predictive 
model, training and testing were conducted using data 
from a period with minimal temperature �uctuations to 
validate improvements in the model’s performance. 
Figure 3-8 shows temperature variations from November 
2020 to March 2021. As temperatures varied signi�cantly 
from November to December but remained relatively 
stable from December to Februar y, the period for 
obtaining operational data was set to December 2020 
through February 2021. �e training period covered two 
weeks in January 2021, and the data used for testing were 
from December 2020 to February 2021.

Figure 3-3: Illustration of Convergence Conditions

Table 3.4 Comparison of Average MAE Before and After Extracting Start-up Operation

　�e timing of the �rst manual adjustment of the burner 
opening a�er ignition (hereina�er referred to as “the 
initial burner adjustment timing”) is expected to vary due 
to human factors and may have an adverse e�ect on the 
performance of the predictive model. �erefore, to 
eliminate the negative impact of such variation, a 
validation was conducted to determine whether focusing 
on the initial burner adjustment timing and narrowing 
the training data̶by selecting 80% of the dataset as 
indicated by the shaded area in Figure 3-9̶would 
improve predictive model performance. �e proportion 
of data used was determined by the author, based on the 
judgment that a su�cient volume of operational data 
could be secured.

　Table 3.7 presents the relationship between the 
burner opening in the data actually used for validation 
and the average MAE before and a�er narrowing the 
training data. �e table con�rms that narrowing the 
training data to records with minimal temperature 
�uctuations and closely aligned initial burner adjustment 
timings results in a lower average MAE, indicating improved 
predictive model performance.
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Gaps in timing between the training and
validation periods
(Data acquisition period used for model
validation)

One week Two weeks One month Two month Three month One year Two years

Average MAE
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Elapsed time（min）
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Burner opening degree（%） （measured）
Burner opening degree （%） （predicted）

Conditions

Training Range Average MAE Data volume

Entire burner operation

Only start-up operations where aggregate temperature converged

Input Parameters ・Aggregate temperature

・Set temperature

・Total feed amount

・Aggregate temperature

・Set temperature

・Total feed amount
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the judgment that it ensures su�cient reproducibility, 
quality of operation, and availability of operational data for 
validation.
　Table 3.4 presents the relationship between the average 
MAE when training on the entire burner operation and 
when training only on the start-up operation where the 
aggregate temperature converged. According to the table, 
training using only the start-up operation where the 
aggregate temperature has converged results in a higher 
average MAE, indicating reduced prediction accuracy. 
　Figure 3-4 presents trend graphs of the predicted 
burner opening degree using two models: one trained on the 
entire burner operation and the other trained only on the 
start-up operation at converged temperature. In the graphs, 
the dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e trend 
graphs also con�rm that the model trained on the entire 
burner operation produces prediction results that more 
closely align with the actual values. In general, prediction 
accuracy tends to decrease with a smaller amount of training 
data. In this study, focusing only on the start-up operation 
reduced the training volume by 74%. 

and Convolutional Neural Network (CNN).
LSTM is a type of neural network designed to handle 
time-series data. As a variant of the Recurrent Neural 
Network (RNN), it addresses the issue of “long-term 
m em o r y  l o ss” f o un d  i n  c o nventi o na l  R N Ns  b y 
introducing memory cells that can retain information 
over extended periods. LSTM adopts a structure that 
recursively uses “memory cell blocks” in place of the 
hidden states used in standard RNNs, enabling it to 
simultaneously leverage both long-term and short-term 
memory. Within each memory cell, a gating mechanism is 
learned, which uses the output values of a combination of 
“the fully connected layer + an activation function” as 

weighting factors to adjust the values of other pathways3).
　CNN is a type of neural network specialized in 
extracting local features. �is network extracts local 
features from input data and aggregates them through 
convolution operations to generate an output. While 
CNNs are generally used in image processing to extract 
two-dimensional spatial features, they can also be applied 
to one-dimensional time series data. In such cases, CNNs 
are able to make predictions based on historical data 
within a �xed time window4).

3.2 Validation Items and Test Results 
　To evaluate the appropriate conditions for constructing 
a  hig h-accurac y pre dictive  model ,  the fol lowing 
validations were conducted:
　１. Validation of training period
　2. Validation of seasonality
　3. Validation of input parameters
　4. Validation of use of only start-up operation
　5. Validation of manual start-up operation
　6. Validation of adding temperature parameters
　7. Validation of use of limited training data
　Validation 5 is similar to Validation 4 in that both use 
only the start-up operation as training data. However, 
while Validation 4 includes both manual and automatic 
operations, Validation 5 uses only manual operations. It 
should be noted that “automatic operation” refers to the 
burner opening operation performed at the control panel, 
whereas “manual operation” refers to the same operation 
performed directly by a veteran operator.

3.2.1 Validation of Training Period
　To identify the appropriate training period conditions, 
we varied the training period of the predictive model (i.e., 

the durations of the training and validation data periods) 
and examined the behavior of the Mean Absolute Error 
(MAE). MAE represents the average of the absolute 
di�erences between the true values and the predicted 
values, which allows us to evaluate the prediction accuracy. 
It is commonly used when the goal is to minimize error, as 
a smaller MAE indicates a smaller discrepancy between 
the true and predicted values. In this study, MAE was 
adopted as an index to validate the prediction accuracy of 
the burner opening degree, representing the di�erence 
between the predicted burner opening and the operation 
performed by a veteran operator. �e average of the MAE 
values obtained in each validation run was referred to as 
"averag e MAE" and was used as  the performance 
evaluation metric for the predictive model.
　Table 3.1 presents the relationship between the training 
period and the average MAE. Overall, the table indicates 
that the longer the training period, the lower the average 
MAE̶in other words, the performance of the predictive 
model improves as the training period increases. 
　�e improvement in average MAE was particularly 
signi�cant when the training period ranged from two 
weeks to one month. However, when the training period 
exceeded one month, the degree of improvement became 
more gradual. Based on this result and considering the 
goal of minimizing the time required for implementation, 
we determined that a one-month training period is 
appropriate, as it achieves 84% of the improvement seen 
with a six-month training period.

1. Background
　�e low success rate of skill transfer to the next generation 
poses a signi�cant challenge in the manufacturing 
industry1). One reason for the low rate is the presence of 
tacit knowledge in veteran operators’ techniques, which 
are di�cult to express or formalize.
　To address  the  cha l leng e ,  we  have  app l ie d  A I 
technologies to make the operational expertise of veteran 
operators visible and explicit in an asphalt plant, so as to 
develop an operation support system that enables novice 
operators without specialized plant knowledge to operate 
the plant with the same pro�ciency as veteran operators.

2. Objective
　�is paper focuses on the predictive function of the 
operation support system, with particular emphasis on the 
function that emulates burner operations performed by 
veteran operators, as this operation plays a critical role 
within the system. �e objective is to identify appropriate 
training data conditions and validate the feasibility of this 
predictive function during the start-up phase of plant 
operation̶speci�cally, the period from burner ignition 
until the aggregate temperature reaches a set temperature 
(hereina�er “start-up operation”). �e burner selected for 
validation (hereina�er referred to as the “V-burner”) is 
the one used for heating and drying virgin aggregate, 

where the feed rate, type, and ratio (feed composition) of 
the aggregate vary. Based on the validation results, the 
author aims to realize an operation support system that 
enables even novice operators without specialized 
knowledge of plant operations to perform operations 
equivalent to those of veteran operators by following the 
guidance of the predictive model that emulates veteran 
operator behavior. In addition, the author is planning to 
undertake e�orts to achieve full automation of the plant 
including improvements to the PID control system2) 
currently used for heating and drying aggregate at the 
control panel that controls the plant, as well as to establish 
remote-operation-based plant operation services.
　Validation of the feasibility of the predictive function 
that emulates the operations of veteran operators is 
essential to enable novice operators without specialized 
knowledge of plant operations to carry out plant operations 
at a level equivalent to that of veteran operators. �e 
predictive function will constitute a key foundational 
technolog y for the complete automation of plant 
operations, which we are pursuing.

3. Test Details
3.1 Algorithm Used for the Test
　�e predictive model used to emulate the burner 
operation employs Long Short-Term Memory (LSTM) 

Figure 3-7: Trend Graph of Burner Opening Degree Before
and After Adding the Temperature Parameters

3.2.6 Validation with Temperature
         Parameters Added to Input Parameters
　To improve prediction accuracy, we considered adding 
ambient temperature as an input parameter. However, 
since ambient temperature is not measured in existing 
plants, we used bag inlet temperature and �ue gas 
temperature (hereina�er referred to as "temperature 
parameters") to indirectly incorporate ambient temperature 
into the model. We then validated whether this approach 
would improve the performance of the predictive model. 
�e temperature parameters are highly dependent on the 
plant’s operating conditions and are believed to approach 
the ambient temperature a�er a su�cient cooling period 
following the end of aggregate supply. However, to ensure 
a su�cient volume of data, we did not perform validation 
using only data that had undergone su�cient cooling 
time. Instead, we validated the model by including the 
temperature parameters as additional input parameters.

prediction results that were more closely aligned with the 
actual measurements. However, the moisture content in 
the supplied sand is considered to have a signi�cant 
impact on burner opening control. �erefore, we will 
continue further validation on the input parameters.

3.2.4 Validation Using Only Start-Up Operation Data
　In previous validations, the model was trained on the 
entire burner operation̶from ignition to shutdown 
(hereina�er referred to as "entire burner operation"). Since 
this development focuses speci�cally on the burner’s start-up 
operation, we conducted a validation using only start-up 
operation data to examine whether it would improve the 
performance of the predictive model. In this validation, 
both automatic and manual operations during start-up 
were included as training data. �e range of start-up 
operation was de�ned as the period from burner ignition 
until the aggregate temperature converges. �e convergence 
condition was de�ned as “when the consecutive extrema fall 
within ±8°C of the set temperature (hereina�er referred to 
as the settling range) three times in series or when the 
temperature remains within the settling range continuously 
for six minutes.” A diagram of the convergence condition is 
shown in Figure 3-3. In the example in Figure 3-3, the 
gray-shaded area is considered to represent the period during 
which the aggregate temperature has converged. �is 
convergence condition was de�ned by the author, based on 

　Figure 3-1 presents trend graphs of the predicted 
burner opening degree using models trained over two 
weeks and one month. In the graphs, the solid line 
represents the predicted values, while the dashed line 
represents the actual measured values. �ese graphs also 
con�rm that the one-month model yields smaller errors 
relative to the actual values and produces more accurate 
prediction results than the two-week model.

3.2.2 Validation of Seasonality
　We assumed that the prediction accuracy might vary 
depending on the di�erence in ambient temperature 
between the data used to train the predictive model and 
the data used for validation. �erefore, we validated the 
prediction accuracy by varying the data acquisition period 
used for model training (hereina�er referred to as the 
“training period”) and the data acquisition period used 

for model validation (hereina�er referred to as the 
“validation period”). In this validation, the training 

period was �xed from April 1 to April 30, 2021, while the 
validation period was varied to observe the behavior of 
the MAE.
　Table 3.2 presents the relationship between the gap in 
timing between the training and validation periods and 

3.2.3 Validation of Input Parameters
　To improve prediction accuracy, we validated whether 
the prediction accuracy could be improved by modifying 
parameters such as aggregate temperature (hereina�er 
referred to as "input parameters") that are used to create 
the predictive model.
　Table 3.3 presents the relationship between input 
parameters and the average MAE. In the previous 
validations, three parameters: aggregate temperature, set 
temperature, and total feed rate were used as input 
parameters. �ese were set as the default condition, 
referred to as Condition A. We further de�ned Condition 
B with the addition of the feed rate of each individual 
feeder to Condition A, Condition C with the addition of 
only the sand feeder's feed rate to Condition A, and 
Condition D, which is similar to Condition C but 
excludes the total feed rate from Condition A. We then 
calculated the average MAE for each condition.  
　According to the table, Condition A resulted in the 
lowest average MAE, indicating that increasing the 
number of input parameters tends to degrade prediction 
accuracy. As an example, Figure 3-2 presents trend 
graphs of the predicted burner opening degree using the 
models from Conditions A and B. In the graphs, the 
dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e graphs 
also con�rmed that the model using Condition A produced 

the average MAE. According to the table, when the time 
gap between the training and validation periods ranged 
from one week to three months, the average MAE tended 
to increase as the time gap widened. However, for gaps of 
one year and two years, the average MAE was equal to or 
even lower than that of the one-week gap.
　�ese results indicate the presence of an annual cycle 
and suggest that the prediction accuracy is strongly 
correlated with the similarity in ambient temperature 
between the training and validation data. �erefore, we 
concluded that the predictive model needs to be updated 
for each season.

Figure 3-4: Trend graphs of burner opening degree compared
between Entire Period and Only Start-up Operation Period

Figure 3-5: Target Range of Manual
Start-Up Operation

Table 3.5 Comparison of Average MAE Before and
After Extracting Manual Start-up Operation

Figure 3-6: Trend Graph of Burner Opening Degree Before
and After Limiting to Manual Start-Up Operation

Table 3.6 Relationship Between Average MAE Before
and After Adding Temperature Parameters

　�is signi�cant reduction in data volume is considered a 
major factor contributing to the decline in prediction 
accuracy. Moreover, by limiting the evaluation target to only 
the start-up operation, the portion of the data following 
temperature convergence̶which is easier to predict̶was 
excluded. �is condition likely resulted in the decreased 
MAE. Since this validation focuses on start-up operations, 
we conducted further veri�cation of methods to improve 
their prediction accuracy in the subsequent sections.

3.2.5 Validation of Manual Start-up Operation
　In previous validations, both automatic and manual 
operations during the start-up phase were used as training 
data. However, the automatic operation does not re�ect 
the decision-making of any veteran operator. To emulate 
the operation of a veteran operator, which is the objective 
of the operation support system, we compared a predictive 
model that includes both the automatic and manual 
operation phases during start-up with another predictive 
model that uses only the manual operation phase, which 
re�ects the intention of the veteran operator, so as to verify 
whether performance improves. �e targeted range for 
manual start-up operation is shown in Figure 3-5 and 
de�ned as the period from the operation start until 
switching from manual to automatic control. It should be 
noted that the same data were used with only the training 
range modi�ed, and the data volume remained constant.
Table 3.5 shows the average MAE before and a�er limiting 
the training range to manual start-up operation only. 
　Figure 3-6 shows trend graphs of the predicted 
burner opening degree using the predictive model that 
includes both automatic and manual operations, and a 
predictive model using only the manual operation. In the 
graphs, the solid line represents predicted values, and the 
dashed line indicates actual values.
　�e table and graphs show that limiting the training 
data to manual start-up operation reduced the average 
MAE, indicating improved predictive model performance. 
�is result suggests that, to enhance prediction accuracy, 
the predictive model should be trained exclusively on the 
operation intended for emulation, thereby improving the 
quality of the training data.

　Table 3.6 compares the average MAE before and a�er 
adding temperature parameters as input variables. �e 
results show that the inclusion of temperature parameters 
led to a reduction in the average MAE, con�rming 
improved predictive model performance.
　Figure 3-7 presents trend graphs of burner opening 
predictions generated by the models with and without the 
addition of temperature parameters to the input parameters. 
In the graphs, the solid line represents predicted values, 
while the dashed line represents actual measurements. �e 
graphs also con�rm that the model incorporating 
temperature parameters produces predictions that more 
closely align with the actual values. Furthermore, it is 
suggested that using only data with su�ciently con�rmed 
cooling time may further enhance prediction accuracy by 
improving the quality of the training dataset.

3.2.7 Validation with Limited Training Data
　Since seasonal variations in ambient temperature are 
considered to a�ect the performance of the predictive 
model, training and testing were conducted using data 
from a period with minimal temperature �uctuations to 
validate improvements in the model’s performance. 
Figure 3-8 shows temperature variations from November 
2020 to March 2021. As temperatures varied signi�cantly 
from November to December but remained relatively 
stable from December to Februar y, the period for 
obtaining operational data was set to December 2020 
through February 2021. �e training period covered two 
weeks in January 2021, and the data used for testing were 
from December 2020 to February 2021.

　�e timing of the �rst manual adjustment of the burner 
opening a�er ignition (hereina�er referred to as “the 
initial burner adjustment timing”) is expected to vary due 
to human factors and may have an adverse e�ect on the 
performance of the predictive model. �erefore, to 
eliminate the negative impact of such variation, a 
validation was conducted to determine whether focusing 
on the initial burner adjustment timing and narrowing 
the training data̶by selecting 80% of the dataset as 
indicated by the shaded area in Figure 3-9̶would 
improve predictive model performance. �e proportion 
of data used was determined by the author, based on the 
judgment that a su�cient volume of operational data 
could be secured.

　Table 3.7 presents the relationship between the 
burner opening in the data actually used for validation 
and the average MAE before and a�er narrowing the 
training data. �e table con�rms that narrowing the 
training data to records with minimal temperature 
�uctuations and closely aligned initial burner adjustment 
timings results in a lower average MAE, indicating improved 
predictive model performance.
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the judgment that it ensures su�cient reproducibility, 
quality of operation, and availability of operational data for 
validation.
　Table 3.4 presents the relationship between the average 
MAE when training on the entire burner operation and 
when training only on the start-up operation where the 
aggregate temperature converged. According to the table, 
training using only the start-up operation where the 
aggregate temperature has converged results in a higher 
average MAE, indicating reduced prediction accuracy. 
　Figure 3-4 presents trend graphs of the predicted 
burner opening degree using two models: one trained on the 
entire burner operation and the other trained only on the 
start-up operation at converged temperature. In the graphs, 
the dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e trend 
graphs also con�rm that the model trained on the entire 
burner operation produces prediction results that more 
closely align with the actual values. In general, prediction 
accuracy tends to decrease with a smaller amount of training 
data. In this study, focusing only on the start-up operation 
reduced the training volume by 74%. 

and Convolutional Neural Network (CNN).
LSTM is a type of neural network designed to handle 
time-series data. As a variant of the Recurrent Neural 
Network (RNN), it addresses the issue of “long-term 
m em o r y  l o ss” f o un d  i n  c o nventi o na l  R N Ns  b y 
introducing memory cells that can retain information 
over extended periods. LSTM adopts a structure that 
recursively uses “memory cell blocks” in place of the 
hidden states used in standard RNNs, enabling it to 
simultaneously leverage both long-term and short-term 
memory. Within each memory cell, a gating mechanism is 
learned, which uses the output values of a combination of 
“the fully connected layer + an activation function” as 

weighting factors to adjust the values of other pathways3).
　CNN is a type of neural network specialized in 
extracting local features. �is network extracts local 
features from input data and aggregates them through 
convolution operations to generate an output. While 
CNNs are generally used in image processing to extract 
two-dimensional spatial features, they can also be applied 
to one-dimensional time series data. In such cases, CNNs 
are able to make predictions based on historical data 
within a �xed time window4).

3.2 Validation Items and Test Results 
　To evaluate the appropriate conditions for constructing 
a  hig h-accurac y pre dictive  model ,  the fol lowing 
validations were conducted:
　１. Validation of training period
　2. Validation of seasonality
　3. Validation of input parameters
　4. Validation of use of only start-up operation
　5. Validation of manual start-up operation
　6. Validation of adding temperature parameters
　7. Validation of use of limited training data
　Validation 5 is similar to Validation 4 in that both use 
only the start-up operation as training data. However, 
while Validation 4 includes both manual and automatic 
operations, Validation 5 uses only manual operations. It 
should be noted that “automatic operation” refers to the 
burner opening operation performed at the control panel, 
whereas “manual operation” refers to the same operation 
performed directly by a veteran operator.

3.2.1 Validation of Training Period
　To identify the appropriate training period conditions, 
we varied the training period of the predictive model (i.e., 

the durations of the training and validation data periods) 
and examined the behavior of the Mean Absolute Error 
(MAE). MAE represents the average of the absolute 
di�erences between the true values and the predicted 
values, which allows us to evaluate the prediction accuracy. 
It is commonly used when the goal is to minimize error, as 
a smaller MAE indicates a smaller discrepancy between 
the true and predicted values. In this study, MAE was 
adopted as an index to validate the prediction accuracy of 
the burner opening degree, representing the di�erence 
between the predicted burner opening and the operation 
performed by a veteran operator. �e average of the MAE 
values obtained in each validation run was referred to as 
"averag e MAE" and was used as  the performance 
evaluation metric for the predictive model.
　Table 3.1 presents the relationship between the training 
period and the average MAE. Overall, the table indicates 
that the longer the training period, the lower the average 
MAE̶in other words, the performance of the predictive 
model improves as the training period increases. 
　�e improvement in average MAE was particularly 
signi�cant when the training period ranged from two 
weeks to one month. However, when the training period 
exceeded one month, the degree of improvement became 
more gradual. Based on this result and considering the 
goal of minimizing the time required for implementation, 
we determined that a one-month training period is 
appropriate, as it achieves 84% of the improvement seen 
with a six-month training period.

1. Background
　�e low success rate of skill transfer to the next generation 
poses a signi�cant challenge in the manufacturing 
industry1). One reason for the low rate is the presence of 
tacit knowledge in veteran operators’ techniques, which 
are di�cult to express or formalize.
　To address  the  cha l leng e ,  we  have  app l ie d  A I 
technologies to make the operational expertise of veteran 
operators visible and explicit in an asphalt plant, so as to 
develop an operation support system that enables novice 
operators without specialized plant knowledge to operate 
the plant with the same pro�ciency as veteran operators.

2. Objective
　�is paper focuses on the predictive function of the 
operation support system, with particular emphasis on the 
function that emulates burner operations performed by 
veteran operators, as this operation plays a critical role 
within the system. �e objective is to identify appropriate 
training data conditions and validate the feasibility of this 
predictive function during the start-up phase of plant 
operation̶speci�cally, the period from burner ignition 
until the aggregate temperature reaches a set temperature 
(hereina�er “start-up operation”). �e burner selected for 
validation (hereina�er referred to as the “V-burner”) is 
the one used for heating and drying virgin aggregate, 

where the feed rate, type, and ratio (feed composition) of 
the aggregate vary. Based on the validation results, the 
author aims to realize an operation support system that 
enables even novice operators without specialized 
knowledge of plant operations to perform operations 
equivalent to those of veteran operators by following the 
guidance of the predictive model that emulates veteran 
operator behavior. In addition, the author is planning to 
undertake e�orts to achieve full automation of the plant 
including improvements to the PID control system2) 
currently used for heating and drying aggregate at the 
control panel that controls the plant, as well as to establish 
remote-operation-based plant operation services.
　Validation of the feasibility of the predictive function 
that emulates the operations of veteran operators is 
essential to enable novice operators without specialized 
knowledge of plant operations to carry out plant operations 
at a level equivalent to that of veteran operators. �e 
predictive function will constitute a key foundational 
technolog y for the complete automation of plant 
operations, which we are pursuing.

3. Test Details
3.1 Algorithm Used for the Test
　�e predictive model used to emulate the burner 
operation employs Long Short-Term Memory (LSTM) 

Figure 3-9: Schematic Diagram
of Data Used for Validation

Figure 3-10: Time from Start of Supply to Initial Burner
Opening Adjustment from December 2020 to February 2021

Figure 3-11 Trend Graph of Burner Opening Degrees Before
and After Narrowing Training Data

Figure 3-8: Temperature Variations from
November 2020 to March 2021

prediction results that were more closely aligned with the 
actual measurements. However, the moisture content in 
the supplied sand is considered to have a signi�cant 
impact on burner opening control. �erefore, we will 
continue further validation on the input parameters.

3.2.4 Validation Using Only Start-Up Operation Data
　In previous validations, the model was trained on the 
entire burner operation̶from ignition to shutdown 
(hereina�er referred to as "entire burner operation"). Since 
this development focuses speci�cally on the burner’s start-up 
operation, we conducted a validation using only start-up 
operation data to examine whether it would improve the 
performance of the predictive model. In this validation, 
both automatic and manual operations during start-up 
were included as training data. �e range of start-up 
operation was de�ned as the period from burner ignition 
until the aggregate temperature converges. �e convergence 
condition was de�ned as “when the consecutive extrema fall 
within ±8°C of the set temperature (hereina�er referred to 
as the settling range) three times in series or when the 
temperature remains within the settling range continuously 
for six minutes.” A diagram of the convergence condition is 
shown in Figure 3-3. In the example in Figure 3-3, the 
gray-shaded area is considered to represent the period during 
which the aggregate temperature has converged. �is 
convergence condition was de�ned by the author, based on 

　Figure 3-1 presents trend graphs of the predicted 
burner opening degree using models trained over two 
weeks and one month. In the graphs, the solid line 
represents the predicted values, while the dashed line 
represents the actual measured values. �ese graphs also 
con�rm that the one-month model yields smaller errors 
relative to the actual values and produces more accurate 
prediction results than the two-week model.

3.2.2 Validation of Seasonality
　We assumed that the prediction accuracy might vary 
depending on the di�erence in ambient temperature 
between the data used to train the predictive model and 
the data used for validation. �erefore, we validated the 
prediction accuracy by varying the data acquisition period 
used for model training (hereina�er referred to as the 
“training period”) and the data acquisition period used 

for model validation (hereina�er referred to as the 
“validation period”). In this validation, the training 

period was �xed from April 1 to April 30, 2021, while the 
validation period was varied to observe the behavior of 
the MAE.
　Table 3.2 presents the relationship between the gap in 
timing between the training and validation periods and 

3.2.3 Validation of Input Parameters
　To improve prediction accuracy, we validated whether 
the prediction accuracy could be improved by modifying 
parameters such as aggregate temperature (hereina�er 
referred to as "input parameters") that are used to create 
the predictive model.
　Table 3.3 presents the relationship between input 
parameters and the average MAE. In the previous 
validations, three parameters: aggregate temperature, set 
temperature, and total feed rate were used as input 
parameters. �ese were set as the default condition, 
referred to as Condition A. We further de�ned Condition 
B with the addition of the feed rate of each individual 
feeder to Condition A, Condition C with the addition of 
only the sand feeder's feed rate to Condition A, and 
Condition D, which is similar to Condition C but 
excludes the total feed rate from Condition A. We then 
calculated the average MAE for each condition.  
　According to the table, Condition A resulted in the 
lowest average MAE, indicating that increasing the 
number of input parameters tends to degrade prediction 
accuracy. As an example, Figure 3-2 presents trend 
graphs of the predicted burner opening degree using the 
models from Conditions A and B. In the graphs, the 
dashed line represents the actual measured values, while 
the solid line represents the predicted values. �e graphs 
also con�rmed that the model using Condition A produced 

the average MAE. According to the table, when the time 
gap between the training and validation periods ranged 
from one week to three months, the average MAE tended 
to increase as the time gap widened. However, for gaps of 
one year and two years, the average MAE was equal to or 
even lower than that of the one-week gap.
　�ese results indicate the presence of an annual cycle 
and suggest that the prediction accuracy is strongly 
correlated with the similarity in ambient temperature 
between the training and validation data. �erefore, we 
concluded that the predictive model needs to be updated 
for each season.

Table 3.7 Comparison of Average MAE Before
and After Narrowing Training Data

　Table 3.6 compares the average MAE before and a�er 
adding temperature parameters as input variables. �e 
results show that the inclusion of temperature parameters 
led to a reduction in the average MAE, con�rming 
improved predictive model performance.
　Figure 3-7 presents trend graphs of burner opening 
predictions generated by the models with and without the 
addition of temperature parameters to the input parameters. 
In the graphs, the solid line represents predicted values, 
while the dashed line represents actual measurements. �e 
graphs also con�rm that the model incorporating 
temperature parameters produces predictions that more 
closely align with the actual values. Furthermore, it is 
suggested that using only data with su�ciently con�rmed 
cooling time may further enhance prediction accuracy by 
improving the quality of the training dataset.

3.2.7 Validation with Limited Training Data
　Since seasonal variations in ambient temperature are 
considered to a�ect the performance of the predictive 
model, training and testing were conducted using data 
from a period with minimal temperature �uctuations to 
validate improvements in the model’s performance. 
Figure 3-8 shows temperature variations from November 
2020 to March 2021. As temperatures varied signi�cantly 
from November to December but remained relatively 
stable from December to Februar y, the period for 
obtaining operational data was set to December 2020 
through February 2021. �e training period covered two 
weeks in January 2021, and the data used for testing were 
from December 2020 to February 2021.
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　�e timing of the �rst manual adjustment of the burner 
opening a�er ignition (hereina�er referred to as “the 
initial burner adjustment timing”) is expected to vary due 
to human factors and may have an adverse e�ect on the 
performance of the predictive model. �erefore, to 
eliminate the negative impact of such variation, a 
validation was conducted to determine whether focusing 
on the initial burner adjustment timing and narrowing 
the training data̶by selecting 80% of the dataset as 
indicated by the shaded area in Figure 3-9̶would 
improve predictive model performance. �e proportion 
of data used was determined by the author, based on the 
judgment that a su�cient volume of operational data 
could be secured.

　Table 3.7 presents the relationship between the 
burner opening in the data actually used for validation 
and the average MAE before and a�er narrowing the 
training data. �e table con�rms that narrowing the 
training data to records with minimal temperature 
�uctuations and closely aligned initial burner adjustment 
timings results in a lower average MAE, indicating improved 
predictive model performance.

　Figure 3-11 presents trend graphs of burner opening 
predictions generated by the models before and a�er 
narrowing the training data. �e solid line represents 
predicted values, while the dashed line represents actual 
measurements. �e graphs also con�rm that the model 
trained with the narrowed dataset produces predictions 
that more closely align with the actual values.

4. Conclusion 
　In this paper, we developed a predictive model for 
V-burner opening based on the operations of a veteran 
plant operator and evaluated the appropriate conditions 
for the training data.
　�e conditions identi�ed through testing as appropriate 
involve focusing on manual start-up operations, selecting 
data under stable ambient temperature conditions, and 
choosing data in which the timing of the initial burner 
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adjustment is similar. On the other hand, challenges 
remain in making accurate predictions during seasons 
with large temperature �uctuations and in maintaining 
prediction accuracy when the model is applied to seasons 
di�erent from those used for training. �ese issues will 
need to be addressed in our future work.

5. Future Outlook
　We plan to verif y the accuracy of the developed 
predictive model through �eld testing. Furthermore, we 
will work on improving the model so that it can adapt to 
chang es  in ambient temperature due to seasonal 
variations. �rough these e�orts, we aim to reduce the 
amount of data required for the operation support 
system and �gure out a method for enabling its early 
implementation in real-world applications.
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