一製造設備紹介 —

BWライン付帯設備更新

1. はじめに

アマダ製ビームワーカー(以降BWと呼ぶ)は、アングル (L)やフラットバー(FB)の穴明け切断を行っており、30年以 上前から、日工では大活躍している重要な生産設備です。 材料の供給と一次加工はモノづくりの一番初めの工程であ り、迅速に安定した材料供給が、一次加工(切断+穴明け) の生産性に影響します。また、材料供給にトラブルが発生す ると、一次加工が遅れ、各モノづくり職場への供給が滞り、工 場全体の生産に大きく影響することから、短時間でも止める ことができない設備です。今回、BWの老朽化更新を機に、 BWへの材料供給設備も更新しましたので紹介します。

2. 材料供給の既設設備

図1 既設素材供給装置 図2 既設素材運搬台車

これまで条鋼材料の一次加工であるBWラインは2台体 制で、2台のフル稼働で、ギリギリ工場全体への一次加工品 の供給が間に合う状態であった。1台のBWがトラブル停止 した場合、残りの1台では、到底処理能力は追いつかない状 態であり、設置スペース的にも3台設置は出来なかったた め、数十年来2台体制で、職場としてはトラブルの度に超過 残業をしても追いつかない状態で苦労していた。この状況を 解決する為、BW更新の機に設置レイアウトを工夫し、BW3 台体制で円滑に生産できるように、材料供給も含め検討を 重ねた。図1の青い設備が既設の2台体制時の素材供給装 置であり、定尺材をBWの加工台に乗せるための設備であ る。図2の設備が、定尺材を素材供給装置の下まで運ぶ運 搬台車である。今回この2種の入替をメインとした付帯設備 入替工事を行った。

3. 素材供給装置の入替

3.1 解決すべき問題点

- ①3台目のBWの設置スペースの確保
- ②供給装置架台の構造変更
- ③BWの稼働を停めない設備入替
- ④天井双頭クレーン3ton+3tonのペンダント干渉

上記4点が、BW3台体制実現の為に解決しなければなら ない大きなハードルでした。

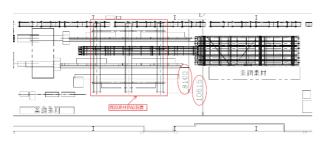


図3 既存供給装置平面図

定尺材の置場を考えると、別工場に置くのは場所を取り過 ぎてしまう問題があるので現実的ではなく、現状の場所に置 くにしても図3のように2台体制の既設供給装置では3台は 到底入らない。

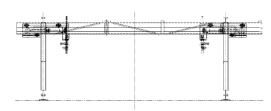


図4 既存供給装置正面図

また、図4のように脚が付いている構造では、これ以上広 げると梁部がたわみ折れる危険性が増し、脚を間に増やし てしまうと複数台での材料共有ができなくなる為現実的では なく、構造の大幅な変更が必要になりました。

3.2 問題の解決方法

図5 新規供給装置架台 図6 無線化天井クレーン

日々どうしようか頭を悩ませながら色んな人に相談する中 で、メンバーの「柱を使ったらどうかな?」という一言で方針が 決まり、図5のように架台フレームを建物柱に持たせる事で、 脚の要らない構造にする事ができ、①②の解決に繋がった。

また、柱に持たせているので任意の高さに設定することが出 来、既設設備の上に渡らせることで稼働を停めない入替が 実現できた。この架台一つで(12)(3)の問題が解決した。次 に、双頭クレーンを無線化するにあたり、3ton+3tonの計 6tonを無線化するとクレーン運転士の資格が必要となる 為、床上操作式クレーンの資格で作業が出来るよう、2.4ton +2.4tonの計4.8tonにホイストを入れ替え5ton未満のク レーンとする事で無線化を実現。これにより④のペンダント干 渉を解決する事が出来た。

3.3 素材吊上マグネット装置

図7 素材吊上装置 図8 素材吊上マグネット

既設に対し架台部が大きく変更した為、素材を1本ずつ吊 り上げる装置の構造変更も必要になった。既設は図4のよう にシリンダーを横に寝かせてチェーンで上げ下げする方式 で、横方向にスペースを取った構造であった。新設備では3 台並べる関係上、同じ構造では移動範囲に制限が発生し てしまう。新たな架台部の構造において、既設設備の上に渡 らせたことで高さ方向のスペースが取れた為、新構造ではシ リンダーを上下方向に設置し、マグネットを直接上下させる方 式とした。新構造の外観を図7に示す。図8に示すのは素材 吊上装置の下部の構造で、電磁マグネット部にあたります。 このマグネットは電磁力を変化させ、積み重なった鋼材でも 1本だけを吊り上げられる優れものです。マグネットでの吊り 上げは既設でも行っていましたが、今回導入した物は停電 時でも磁力が継続する安全にも配慮した物を選定しました。

4. 素材運搬台車の入替

4.1 要求事項

既設の運搬台車は、大きな架台の上を台車が走行も横行 もする非常に効率的で使い勝手の良い設備でした。しかし、 凝っているからこその弊害でメンテナンス性に難があり、経 年劣化で設備に不具合が起こってからは修繕も出来ず走 行しか出来ない設備となってしまっていた。そこで、入替にあ たり下記のような要求事項が発生した。

- ①メンテナンスしやすい構造であること
- ②現状と変わらない量を運搬できること
- ③架台方式でなく、台車全体が動く構造である事。

これらをクリアした物が図9と図10に示した運搬台車で ある。設備に何かあった際でも単独で取り外しが出来、メン

テナンスも容易。ガイドレールはありますが高所作業車が侵 入する事も可能である。今後運用していく中で改造もしやす いシンプルな構造としました。

図10 素材運搬台車アップ

5. 制御装置

今回の設備入替に伴い、制御装置も一新した。外観を図 11と図12に示します。

図11 制御盤

図12 手元操作スイッチ

既設の設備では、全てのモータが開閉器直で、急稼動・ 急停止の制御であった。その為、マグネットの位置調整が難 しく積んである条鋼材が崩れる事も稀に発生していた。そこ で新制御では、素材供給装置の横行と素材運搬台車の走 行をインバータ制御とし、滑らかな動きで微調整をしやすくし ました。また、手元スイッチを各BWに配置し、全附帯設備が 1つの盤で操作出来るように改善した。

6.終わりに

BWの納期の都合上、まだ3台目は納入されておらず完成 には至っていない為油断は禁物ですが、3台目納入に備え た今回の1期目工事を問題なく完工する事が出来たのは非 常に嬉しく思います。今後も製造設備の面で、より良い製品 を納期通りにお客様へ提供できるよう尽力していきます。

今回設備入替にご協力くださった製造本部の皆様、短納期 にご対応頂いた業者の皆様に感謝申し上げます。今後も随 時設備更新を行っていきますので、引き続きのご協力をお願 い致します。

筆者紹介

TANAKA Takahiro 田中 隆浩 2015年入社 製造本部 本社工場 生産技術室

2025 | NO.006 [製造設備紹介] BWライン付帯設備更新